
Python is an Object oriented programming since it is developed on the two basic fundamental concepts known as a class and an object .

Class : A class is a logical entity(person, place or a thing)
 Ex: Employee
 A class contain variable(data members) and functions(methods)
 Ex: Employee has eno, ename ,esal as the data members
 Employee can have the functionalities such as displayDetails()
Object : An Object is a physical entity which is an instance of the class
 Ex: Jack is an Employee
 An Object help us to access the data members and the functions(methods)

In python we have two types of classes
1. Predefined classes
2. User-defined classes

Predefined classes : The classes that are already created and as a programmer we create the Objects to access the variables and methods
Ex: str,list,…

var1 = 40
print(type(var1))
#<class 'int'>

lst=[15,12,18]
print(type(lst))

#<class 'list'>

User-defined classes : These are the type of classes that are defined by the user by having his own variables and methods
#Syntax:
class classname:
 class variables
 class methods
 instance methods
 instance variables
 constructors

#Example
Class variables are the variables declared inside the class and outside the methods and are accessible using the class instance variable and
the classname also inside and outside the class

class Employee:
 eno = 5614
 ename= "Jack"
 esal = 50000

e1 = Employee()
#e1-->class instance variable
#Employee() --> instantiating the object
print(e1.eno)
print(e1.ename)
print(e1.esal)
5614
Jack
50000

print(Employee.eno)
print(Employee.ename)
print(Employee.esal)

Day15_Class and Object

 Monie_DS_Python Page 1

print(Employee.esal)
5614
Jack
50000

class methods : The methods(functions) created inside the class and are accessed or invoked using the class name only

class Employee:
 eno = 5614
 ename= "Jack"
 esal = 50000
 def display():
 print(Employee.eno)
 print(Employee.ename)
 print(Employee.esal)

Employee.display()
5614
Jack
50000

Instance methods : The methods defined by using 'self' keyword as the first parameter inside the method indicating that this method will be
accessed by using the instance. This method may contain instance variables. There is no need to pass any value onto the self parameter

Instance variables : The variables declared inside the instance methods using self.variable name and are accessed through out the class

class Employee:
 def setDetails(self):
 self.eno = 5614
 self.ename= "Jack"
 self.esal = 50000
 def display(self):
 print(self.eno)
 print(self.ename)
 print(self.esal)

Employee.setDetails()
#TypeError: setDetails() missing 1 required positional argument: 'self'

e1=Employee()
e1.setDetails()

e1.display()

class Employee:
 def setDetails(self,e,n,s):
 self.eno = e
 self.ename= n
 self.esal = s
 def display(self):
 print(self.eno)
 print(self.ename)
 print(self.esal)

e1 = Employee()
e1.setDetails(1011,"Peter",45000)
e1.display()
1011
Peter
45000

 Monie_DS_Python Page 2

45000

Constructor :
1. A constructor is a method that is defined using __init__(self,par1,par2,…) and can be called or invoked by using the classname().
2. It is mostly used for initializing the variables that required for all the methods

class Employee:
 def __init__(self,e,n,s):
 self.eno = e
 self.ename= n
 self.esal = s
 def display(self):
 print(self.eno)
 print(self.ename)
 print(self.esal)

e1 = Employee(10,"Monie",55000)
e1.display()
10
Monie
55000

 Monie_DS_Python Page 3

